Full metadata record

DC FieldValueLanguage
dc.contributor.author주상우ko
dc.contributor.author응호익롱ko
dc.contributor.authorTrung-Dung Dang[Trung-Dung Dang]ko
dc.contributor.author변찬ko
dc.date.accessioned2015-12-17T05:00:48Z-
dc.date.available2015-12-17T05:00:48Z-
dc.date.created2015-11-13-
dc.date.issued201503-
dc.identifier.citationBIOMICROFLUIDICS, v.9, no.2-
dc.identifier.issn1932-1058-
dc.identifier.urihttp://hdl.handle.net/YU.REPOSITORY/33209-
dc.identifier.urihttp://dx.doi.org/10.1063/1.4916228-
dc.description.abstractIn this study, droplet formations in microfluidic double T-junctions (MFDTD) are investigated based on a two-dimensional numerical model with volume of fluid method. Parametric ranges for generating alternating droplet formation (ADF) are identified. A physical background responsible for the ADF is suggested by analyzing the dynamical stability of flow system. Since the phase discrepancy between dispersed flows is mainly caused by non-symmetrical breaking of merging droplet, merging regime becomes the alternating regime at appropriate conditions. In addition, the effects of channel geometries on droplet formation are studied in terms of relative channel width. The predicted results show that the ADF region is shifted toward lower capillary numbers when channel width ratio is less than unity. The alternating droplet size increases with the increase of channel width ratio. When this ratio reaches unity, alternating droplets can be formed at very high water fraction (wf = 0.8). The droplet formation in MFDTD depends significantly on the viscosity ratio, and the droplet size in ADF decreases with the increase of the viscosity ratio. The understanding of underlying physics of the ADF phenomenon is useful for many applications, including nanoparticle synthesis with different concentrations, hydrogel bead generation, and cell transplantation in biomedical therapy. (C) 2015 AIP Publishing LLC.-
dc.language영어-
dc.publisherAMER INST PHYSICS-
dc.subjectLATTICE BOLTZMANN METHOD-
dc.subjectFLOW-FOCUSING DEVICE-
dc.subjectSURFACE-TENSION-
dc.subjectMICROCHANNEL-
dc.subjectSIMULATIONS-
dc.subjectPARTICLES-
dc.subjectVISCOSITY-
dc.subjectMICROPARTICLES-
dc.subjectCOALESCENCE-
dc.subjectGENERATION-
dc.titleA numerical study on the dynamics of droplet formation in a microfluidic double T-junction-
dc.typeArticle-
dc.identifier.wosid000353829200015-
Appears in Collections:
공과대학 > 기계공학부 > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE