Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation

Title
Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation
Author(s)
김종오AM Yousaf[AM Yousaf]김동욱[김동욱]오유경[오유경]최한곤[최한곤]용철순
Keywords
SPRAY-DRYING TECHNIQUE; DIFFERENTIAL SCANNING CALORIMETRY; LOADED GELATIN MICROCAPSULE; SOLID-PHASE EXTRACTION; SODIUM LAURYL SULFATE; WATER-SOLUBLE DRUG; DISSOLUTION-RATE; MICRONIZED FENOFIBRATE; PHARMACEUTICAL APPLICATIONS; SUPERCRITICAL ANTISOLVENT
Issue Date
201503
Publisher
DOVE MEDICAL PRESS LTD
Citation
INTERNATIONAL JOURNAL OF NANOMEDICINE, v.10, pp.1819 - 1830
Abstract
Background: The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods: The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-beta-cyclodextrin (HP-beta-CD) nano-corpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-beta-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results: Among the tested carriers, PVP, HP-beta-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-beta-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with the PVP nanospheres and HP-beta-CD nanocorpuscles; however, neither of them resulted in the highest oral bioavailability. Irrespective of relatively retarded dissolution rate, gelatin nanocapsules showed the highest apparent aqueous solubility and furnished the most improved oral bioavailability of the drug (similar to 5.5-fold), owing to better wetting and diminution in crystallinity. Conclusion: Fenofibrate-loaded gelatin nanocapsules prepared using the solvent-evaporation method through the spray-drying technique could be a potential oral pharmaceutical product for administering the poorly water-soluble fenofibrate with an enhanced bioavailability.
URI
http://hdl.handle.net/YU.REPOSITORY/33148http://dx.doi.org/10.2147/IJN.S78895
ISSN
1178-2013
Appears in Collections:
약학대학 > 약학부 > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE