Full metadata record

DC FieldValueLanguage
dc.contributor.author박주현ko
dc.contributor.authorM.J. Park[M.J. Park]ko
dc.contributor.authorO.M. Kwon[O.M. Kwon]ko
dc.contributor.authorS.M. Lee[S.M. Lee]ko
dc.contributor.authorE.J. Cha[E.J. Cha]ko
dc.date.accessioned2015-12-17T04:56:15Z-
dc.date.available2015-12-17T04:56:15Z-
dc.date.created2015-11-13-
dc.date.issued201504-
dc.identifier.citationNEUROCOMPUTING, v.153, pp.255 - 270-
dc.identifier.issn0925-2312-
dc.identifier.urihttp://hdl.handle.net/YU.REPOSITORY/32843-
dc.identifier.urihttp://dx.doi.org/10.1016/j.neucom.2014.11.029-
dc.description.abstractThis paper considers the problem of delay-dependent H-infinity state estimation for discrete-time neural networks with interval time-varying delays and probabilistic diverging disturbances. By constructing a newly augmented Lyapunov-Krasovskii functional, a less conservative criterion for the existence of the estimator of discrete-time neural networks without disturbances is introduced in Theorem 1 with the framework of linear matrix inequalities (LMIs). Based on the result of Theorem 1, a designing criterion of the estimator for a newly constructed error dynamic system with probabilistic diverging disturbances between original system and estimator will be proposed in Theorem 2. Two numerical examples are given to show the improvements over the existing ones and the effectiveness of the proposed idea. (C) 2014 Elsevier B.V. All rights reserved.-
dc.language영어-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectDERIVATIVE-DEPENDENT STABILITY-
dc.subjectGLOBAL ASYMPTOTIC STABILITY-
dc.subjectDISTRIBUTED DELAY-
dc.subjectLINEAR-SYSTEMS-
dc.subjectFUZZY-SYSTEMS-
dc.subjectCRITERIA-
dc.subjectSYNCHRONIZATION-
dc.subjectDYNAMICS-
dc.subjectMODEL-
dc.titleH-infinity state estimation for discrete-time neural networks with interval time-varying delays and probabilistic diverging disturbances-
dc.typeArticle-
dc.identifier.wosid000350524900026-
Appears in Collections:
공과대학 > 전기공학과 > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE