Porous TiNb2O7 nanofibers decorated with conductive Ti1-xNbxN bumps as a high power anode material for Li-ion batteries

Title
Porous TiNb2O7 nanofibers decorated with conductive Ti1-xNbxN bumps as a high power anode material for Li-ion batteries
Author(s)
송태섭박현중[박현중]백운규[백운규]
Keywords
RECHARGEABLE LITHIUM BATTERIES; VANADIUM NITRIDE; OXYNITRIDE; TIO2; FILM; STORAGE; NBN; PHOTOCATALYSIS; PERFORMANCE; ELECTRODES
Issue Date
201504
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v.3, no.16, pp.8590 - 8596
Abstract
Titanium niobium oxide (TiNb2O7) has been reported recently as an attractive anode material for lithium ion batteries due to its practical capacity of similar to 280 mA h g(-1), which is much higher than those of well-known metal oxide materials such as TiO2 and Li4Ti5O12. However, low electronic conductivity and poor lithium diffusivity limit its practical use as the active material in lithium ion batteries. Here, we synthesized porous TiNb2O7 nanofibers decorated with Ti1-xNbxN bumps via electro-spinning and thermal ammonia gas treatment. As-prepared nanofibers have one-dimensional geometry with an average diameter of similar to 110 nm, and consist of similar to 70 nm crystallites and pores in the range of 0-40 nm, shortening pathways for Li+ ion migration into the host material. Furthermore, conductive Ti1-xNbxN bumps with a particle size of similar to 5 nm were formed on the surface via thermal ammonia gas treatment which render fast electron transport along the longitudinal direction. The fibers have a specific discharge capacity of similar to 254 mA h g(-1) at 1 C and a superior rate capability (similar to 183 mA h g(-1) at 100 C). They also show a robust cycle performance over 500 cycles. These dramatic achievements are attributed to heterogeneous nano-structuring creating a porous structure, and the conductivity of the metal nitride achieved by optimal synthetic conditions.
URI
http://hdl.handle.net/YU.REPOSITORY/32681http://dx.doi.org/10.1039/c5ta00467e
ISSN
2050-7488
Appears in Collections:
공과대학 > 신소재공학부 > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE