TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries

Title
TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries
Author(s)
송태섭Hyungkyu Han[Hyungkyu Han]Heechae Choi[Heechae Choi]JungWoo Lee[JungWoo Lee]Hyunjung Park[Hyunjung Park]Sangkyu Lee[Sangkyu Lee]WonIl Park[WonIl Park]Seungchul Kim[Seungchul Kim]Li Liu[Li Liu]Ungyu Paik[Ungyu Paik]
Keywords
ANATASE TITANIUM-DIOXIDE; ELECTROCHEMICAL PROPERTIES; STORAGE; OXIDE; ELECTRODE; INTERCALATION; PERFORMANCE; EFFICIENT; INSERTION; CAPACITY
Issue Date
201404
Publisher
TSINGHUA UNIV PRESS
Citation
NANO RESEARCH, v.7, no.4, pp.491 - 501
Abstract
The inherently low electrical conductivity of TiO2-based electrodes as well as the high electrical resistance between an electrode and a current collector represents a major obstacle to their use as an anode for lithium ion batteries. In this study, we report on high-density TiO2 nanotubes (NTs) branched onto a carbon nanofiber (CNF) "tree" that provide a low resistance current path between the current collector and the TiO2 NTs. Compared to a TiO2 NT array grown directly on the current collector, the branched TiO2 NTs tree, coupled with the CNF electrode, exhibited similar to 10 times higher areal energy density and excellent rate capability (discharge capacity of similar to 150 mA.h.g(-1) at a current density of 1,000 mA.g(-1)). Based on the detailed experimental results and associated theoretical analysis, we demonstrate that the introduction of CNFs with direct electric contact with the current collector enables a significant increase in areal capacity (mA.h.cm(-2)) as well as excellent rate capability.
URI
http://hdl.handle.net/YU.REPOSITORY/32542http://dx.doi.org/10.1007/s12274-014-0415-1
ISSN
1998-0124
Appears in Collections:
공과대학 > 신소재공학부 > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE