Full metadata record

DC FieldValueLanguage
dc.contributor.author황도삼ko
dc.contributor.authorThien-Phuong LE[Thien-Phuong LE]ko
dc.contributor.authorBay Vo[Bay Vo]ko
dc.contributor.authorBac LE[Bac LE]ko
dc.contributor.authorTzung-Pei Hong[Tzung-Pei Hong]ko
dc.date.accessioned2015-12-17T03:59:50Z-
dc.date.available2015-12-17T03:59:50Z-
dc.date.created2015-11-13-
dc.date.issued201409-
dc.identifier.citationCOMPUTING AND INFORMATICS, v.33, no.3, pp.609 - 632-
dc.identifier.issn1335-9150-
dc.identifier.urihttp://hdl.handle.net/YU.REPOSITORY/30795-
dc.description.abstractIncremental data mining has been discussed widely in recent years, as it has many practical applications, and various incremental mining algorithms have been proposed. Hong et al. proposed an efficient incremental mining algorithm for handling newly inserted transactions by using the concept of pre-large itemsets. The algorithm aimed to reduce the need to rescan the original database and also cut maintenance costs. Recently, Lin et al. proposed the Pre-FUFP algorithm to handle new transactions more efficiently, and make it easier to Update the FP-tree. However, frequent itemsets must be mined from the FP-growth algorithm. In this paper, we propose a Pre-FUT algorithm (Fast-Update algorithm using the Trie data structure and the concept of pre-large itemsets), which not only builds and updates the trie structure when new transactions are inserted, but also mines all the frequent itemsets easily from the tree. Experimental results show the good performance of the proposed algorithm.-
dc.language영어-
dc.publisherSLOVAK ACAD SCIENCES INST INFORMATICS-
dc.subjectFREQUENT PATTERN TREES-
dc.subjectSEQUENTIAL PATTERNS-
dc.subjectPERSPECTIVE-
dc.subjectALGORITHM-
dc.titleIMPROVING EFFICIENCY OF INCREMENTAL MINING BY TRIE STRUCTURE AND PRE-LARGE ITEMSETS-
dc.typeArticle-
dc.identifier.wosid000343020100008-
Appears in Collections:
공과대학 > 컴퓨터공학과 > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE