Cooling performance of 25 kW in-wheel motor for electric vehicles

Title
Cooling performance of 25 kW in-wheel motor for electric vehicles
Author(s)
김성철김욱[김욱]김민수[김민수]
Issue Date
201308
Publisher
KOREAN SOC AUTOMOTIVE ENGINEERS-KSAE
Citation
INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, v.14, no.4, pp.559 - 567
Abstract
The in-wheel motor used in electric vehicles was designed and constructed for an electric direct-drive traction system. It is difficult to connect cooling water piping to the in-wheel motor because the in-wheel motor is located within the wheel structure. In the air cooling structure for the in-wheel motor, an outer surface on the housing is provided with cooling grooves to increase the heat transfer area. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the in-wheel motor for various motor speeds and heat generations. In order to resolve heat release, the analysis has been performed using conjugate heat transfer (conduction and convection). As a result, flow fields and temperature distribution inside the in-wheel motor were obtained for base speed condition (1250 rpm) and maximum speed condition (5000 rpm). The thermo-flow analysis of the in-wheel motor for vehicles was performed in consideration of ram air effect. Also, in order to improve cooling effect of the motor, we variously changed geometries of housing. Therefore, we confirmed the feasibility of the air cooling for the motors of 25 kW capacity with housing geometry having cooling grooves and investigated the cooling performance enhancement. We found that the cooling effect was most excellent, in case that cooling groove direction was same with air flow direction and arranged densely.
URI
http://hdl.handle.net/YU.REPOSITORY/29277http://dx.doi.org/10.1007/s12239-013-0060-9
ISSN
1229-9138
Appears in Collections:
공과대학 > 기계공학부 > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE