Application of a Land Surface Model Using Remote Sensing Data for High Resolution Simulations of Terrestrial Processes

Title
Application of a Land Surface Model Using Remote Sensing Data for High Resolution Simulations of Terrestrial Processes
Author(s)
최현일
Keywords
CLIMATE MODELS; RUNOFF; SOIL; WATER; PARAMETERIZATION; COVER
Issue Date
201312
Publisher
MDPI AG
Citation
REMOTE SENSING, v.5, no.12, pp.6838 - 6856
Abstract
Most current land surface models (LSMs) coupled to regional climate models (RCMs) have been implemented at the several tens of kilometer spatial scales. Modeling land surface processes in LSMs at a finer resolution is necessary for improvements in terrestrial water and energy predictions especially for small catchments. This study has therefore assessed the applicability of high-resolution simulations for terrestrial processes to a small study basin from the Common Land Model (CoLM) using 1-km surface boundary conditions (SBCs) based on remote sensing products. The performance of the CoLM simulations at finer (1-km) and coarser (30-km) resolutions are evaluated for daily runoff and land surface temperature results which have a significant influence on the terrestrial water and energy cycles. The daily stream water temperature is also estimated by a linear regression function of the 1-km daily land surface temperature prediction. The daily stream runoff and temperature results are compared with observations from a stream gauge station, and the daily land surface temperature prediction is compared with the 1-km remote sensing product. It is observed that the high-resolution CoLM results can reasonably capture seasonal variations in both daily runoff and temperatures crucial to the terrestrial water and energy budget.
URI
http://hdl.handle.net/YU.REPOSITORY/28140http://dx.doi.org/10.3390/rs5126838
ISSN
2072-4292
Appears in Collections:
공과대학 > 건설시스템공학과 > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE