Full metadata record

DC FieldValueLanguage
dc.contributor.author이재운ko
dc.contributor.author손무영[손무영]ko
dc.contributor.author김동석[김동석]ko
dc.contributor.author권영수ko
dc.date.accessioned2015-12-17T01:37:52Z-
dc.date.available2015-12-17T01:37:52Z-
dc.date.created2015-11-13-
dc.date.issued201101-
dc.identifier.citationDISCRETE APPLIED MATHEMATICS, v.159, no.1, pp.46 - 52-
dc.identifier.issn0166-218X-
dc.identifier.urihttp://hdl.handle.net/YU.REPOSITORY/25800-
dc.identifier.urihttp://dx.doi.org/10.1016/j.dam.2010.09.004-
dc.description.abstractThe existence problem of the total domination vertex critical graphs has been studied in a series of articles we first settle the existence problem with respect to the parities of the total domination number m and the maximum degree Delta for even m except m = 4 there is no m-gamma(iota) critical graph regardless of the parity of Delta for m = 4 or odd m >= 3 and for even Delta an m-gamma(iota)-critical graph exists if and only if Delta >= 2left perpendicular m-1/2 right perpendicular for m = 4 or odd m >= 3 and for odd Delta if Delta >= 2left perpendicular m-1/2 right perpendicular + 7 then m-gamma(iota)-critical graphs exist if Delta < 2left perpendicular m-1/2 right perpendicular then m-gamma(iota)-critical graphs do not exist The only remaining open cases are Delta = 2left perpendicular m-1/2 right perpendicular + k k = 1 3 5 Second we study these remaining open cases when m = 4 or odd m >= 9 As the previously known result for m = 3 we also show that for Delta(G) = 3 5 7 there is no 4-gamma(iota)-critical graph of order Delta (G) + 4 On the contrary it is shown that for odd m >= 9 there exists an m-gamma(iota)-critical graph for all Delta >= m - 1 (C) 2010 Elsevier B V All rights reserved-
dc.language영어-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectDIAMETER-
dc.titleOn the existence problem of the total domination vertex critical graphs-
dc.typeArticle-
dc.identifier.wosid000285228500005-
dc.identifier.scopusid2-s2.0-78149464527-
Appears in Collections:
이과대학 > 수학과 > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE