3-Indolylacetonitrile Decreases Escherichia coli O157:H7 Biofilm Formation and Pseudomonas aeruginosa Virulence

Title
3-Indolylacetonitrile Decreases Escherichia coli O157:H7 Biofilm Formation and Pseudomonas aeruginosa Virulence
Author(s)
이진태조무환이진형
Keywords
DIFFERENTIAL GENE-EXPRESSION; QUORUM-SENSING INHIBITORS; IN-VITRO; ANALYSIS REVEALS; INDOLE; SIGNAL; PLANT; ACID; BACTERIA; BIOSYNTHESIS
Issue Date
201101
Publisher
WILEY-BLACKWELL PUBLISHING, INC
Citation
ENVIRONMENTAL MICROBIOLOGY, v.13, no.1, pp.62 - 73
Abstract
P>Intercellular signal indole and its derivative hydroxyindoles inhibit Escherichia coli biofilm and diminish Pseudomonas aeruginosa virulence. However, indole and bacterial indole derivatives are unstable in the microbial community because they are quickly degraded by diverse bacterial oxygenases. Hence, this work sought to identify novel, non-toxic, stable and potent indole derivatives from plant sources for inhibiting the biofilm formation of E. coli O157:H7 and P. aeruginosa. Here, plant auxin 3-indolylacetonitrile (IAN) was found to inhibit the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth. IAN more effectively inhibited biofilms than indole for the two pathogenic bacteria. Additionally, IAN decreased the production of virulence factors including 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), pyocyanin and pyoverdine in P. aeruginosa. DNA microarray analysis indicated that IAN repressed genes involved in curli formation and glycerol metabolism, whereas IAN induced indole-related genes and prophage genes in E. coli O157:H7. It appeared that IAN inhibited the biofilm formation of E. coli by reducing curli formation and inducing indole production. Also, corroborating phenotypic results of P. aeruginosa, whole-transcriptomic data showed that IAN repressed virulence-related genes and motility-related genes, while IAN induced several small molecule transport genes. Furthermore, unlike bacterial indole derivatives, plant-originated IAN was stable in the presence of either E. coli or P. aeruginosa. Additionally, indole-3-carboxyaldehyde was another natural biofilm inhibitor for both E. coli and P. aeruginosa.
URI
http://hdl.handle.net/YU.REPOSITORY/25783http://dx.doi.org/10.1111/j.1462-2920.2010.02308.x
ISSN
1462-2912
Appears in Collections:
공과대학 > 화학공학부 > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE