Transcriptomic Analysis for Genetic Mechanisms of the Factors Related to Biofilm Formation in Escherichia coli O157:H7

Title
Transcriptomic Analysis for Genetic Mechanisms of the Factors Related to Biofilm Formation in Escherichia coli O157:H7
Author(s)
이진태조무환이진형김용규[김용규]토마스우드[토마스우드]
Keywords
HEMOLYTIC-UREMIC SYNDROME; SHIGA-TOXIN; STAINLESS-STEEL; O157-H7 STRAIN; COLANIC ACID; EXPRESSION; CELLULOSE; CURLI; INDOLE; AUTOINDUCER-2
Issue Date
201104
Publisher
SPRINGER
Citation
CURRENT MICROBIOLOGY, v.62, no.4, pp.1321 - 1330
Abstract
Two lineages of enterohemorrhagic Escherichia coli O157:H7 (EDL933, Stx1(+) and Stx2(+)) and 86-24 (Stx2(+)) were investigated to determine the genetic basis of biofilm formation on abiotic surfaces. Strain EDL933 formed a robust biofilm while strain 86-24 formed almost no biofilm on either polystyrene plates or polyethylene tubes. Whole-transcriptome profiles of EDL933 versus 86-24 revealed that in the strong biofilm-forming strain, genes involved in curli biosynthesis and cellulose production were significantly induced, whereas genes involved in indole signaling were most repressed. Additionally, 49 phage genes were highly induced and repressed between the two strains. Curli assays using Congo red plates and scanning electron microscopy corroborated the microarray data as the EDL933 strain produced a large amount of curli, while strain 86-24 formed much less curli. Moreover, EDL933 produced 19-fold more cellulose than 86-24, and indole production in EDL933 was two times lower than that of the strain 86-24. Therefore, it appears E. coli O157:H7 EDL933 produces more biofilm because of its increased curli and cellulose production and reduced indole production.
URI
http://hdl.handle.net/YU.REPOSITORY/25407http://dx.doi.org/10.1007/s00284-010-9862-4
ISSN
0343-8651
Appears in Collections:
공과대학 > 화학공학부 > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE