A Novel Multimodal Optimization Algorithm Applied to Electromagnetic Optimization

Title
A Novel Multimodal Optimization Algorithm Applied to Electromagnetic Optimization
Author(s)
우동균최종호[최종호]Mohammad Ali[Mohammad Ali]정현교[정현교]
Keywords
NICHING GENETIC ALGORITHM; EVOLUTION STRATEGY; COGGING TORQUE; AXIAL-FLUX; MOTOR; DESIGN
Issue Date
201106
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Citation
IEEE TRANSACTIONS ON MAGNETICS, v.47, no.6, pp.1667 - 1673
Abstract
The selection of optimum parameters in electromagnetic design usually requires optimization of multimodal, nonlinear functions. This leads to extensive calculations which pose a huge inconvenience in the design process. This paper proposes a novel algorithm for dealing efficiently with this issue. The proposed algorithm interprets the problem as an unexplored terrain for climbing. Through the use of contour line concept coupled with Kriging, the algorithm finds out all the peaks in the problem domain with as few function calls as possible. The efficiency of the proposed algorithm is demonstrated by application to conventional test functions. In this paper, the simulation results show that skewing does not necessarily reduce the cogging torque but may cause it to increase for certain pole-arc to pole-pitch ratio. The developed algorithm is applied to the magnet shape optimization of an axial flux permanent magnet synchronous machine and the cogging torque was reduced to 79.8% of the initial one.
URI
http://hdl.handle.net/YU.REPOSITORY/25106http://dx.doi.org/10.1109/TMAG.2011.2106218
ISSN
0018-9464
Appears in Collections:
공과대학 > 전기공학과 > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE